next Linearity of the Inner Product
previous Banach Spaces
up Geometric Signal Theory   Contents   Global Contents
global_index Global Index   Index   Search

The Inner Product

The inner product (or ``dot product'') is an operation on two vectors which produces a scalar. Defining an inner product for a Banach space specializes it to a Hilbert space (or ``inner product space''). There are many examples of Hilbert spaces, but we will only need $ \{{\bf C}^N,{\bf C}\}$ for this book (complex length $ N$ vectors, and complex scalars).

The inner product between (complex) $ N$-vectors $ x$ and $ y$ is defined by

$\displaystyle \left<x,y\right> \isdef \sum_{n=0}^{N-1}x(n) \overline{y(n)}.
$

The complex conjugation of the second vector is done in order that a norm will be induced by the inner product:

$\displaystyle \left<x,x\right> = \sum_{n=0}^{N-1}x(n)\overline{x(n)}
= \sum_{n=0}^{N-1}\left\vert x(n)\right\vert^2 \isdef {\cal E}_x = \Vert x\Vert^2
$

As a result, the inner product is conjugate symmetric:

$\displaystyle \left<y,x\right> = \overline{\left<x,y\right>}
$

Note that the inner product takes $ {\bf C}^N\times{\bf C}^N$ to $ {\bf C}$. That is, two length $ N$ complex vectors are mapped to a complex scalar.

Example: For $ N=3$ we have, in general,

$\displaystyle \left<x,y\right> = x_0 \overline{y_0} + x_1 \overline{y_1} + x_2 \overline{y_2}.
$

Let

\begin{eqnarray*}
x &=& [0,j,1] \\
y &=& [1,j,j].
\end{eqnarray*}

Then

$\displaystyle \left<x,y\right> = 0\cdot 1 + j \cdot (-j) + 1 \cdot (-j) = 0 + 1 + (-j) = 1-j.
$



Subsections
next Linearity of the Inner Product
previous Banach Spaces
up Geometric Signal Theory   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)