next Triangle Difference Inequality
previous Cauchy-Schwarz Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

Triangle Inequality

The triangle inequality states that the length of any side of a triangle is less than or equal to the sum of the lengths of the other two sides, with equality occurring only when the triangle degenerates to a line. In $ {\bf C}^N$, this becomes

$\displaystyle \Vert\underline{x}+\underline{y}\Vert \leq \Vert\underline{x}\Vert + \Vert\underline{y}\Vert.
$

We can show this quickly using the Schwarz Inequality:

\begin{eqnarray*}
\Vert\underline{x}+\underline{y}\Vert^2 &=& \left<\underline{x...
...y}\Vert &\leq& \Vert\underline{x}\Vert + \Vert\underline{y}\Vert
\end{eqnarray*}


next Triangle Difference Inequality
previous Cauchy-Schwarz Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)