next Vector Cosine
previous Triangle Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

Triangle Difference Inequality

A useful variation on the triangle inequality is that the length of any side of a triangle is greater than the absolute difference of the lengths of the other two sides:

$\displaystyle \Vert\underline{x}-\underline{y}\Vert \geq \left\vert\Vert\underline{x}\Vert - \Vert\underline{y}\Vert\right\vert
$

Proof: By the triangle inequality,

\begin{eqnarray*}
\Vert\underline{y}+ (\underline{x}-\underline{y})\Vert &\leq &...
...}\Vert &\geq& \Vert\underline{x}\Vert - \Vert\underline{y}\Vert.
\end{eqnarray*}

Interchanging $ \underline{x}$ and $ \underline{y}$ establishes the absolute value on the right-hand side.


next Vector Cosine
previous Triangle Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)