next Orthogonality
previous Triangle Difference Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

Vector Cosine

The Cauchy-Schwarz Inequality can be written

$\displaystyle \frac{\left\vert\left<\underline{x},\underline{y}\right>\right\vert}{\Vert\underline{x}\Vert\cdot\Vert\underline{y}\Vert} \leq 1.
$

In the case of real vectors $ \underline{x},\underline{y}$, we can always find a real number $ \theta$ which satisfies

$\displaystyle \cos(\theta) \isdef \frac{\left<\underline{x},\underline{y}\right>}{\Vert\underline{x}\Vert\cdot\Vert\underline{y}\Vert}.
$

We thus interpret $ \theta$ as the angle between two vectors in $ {\bf R}^N$.


next Orthogonality
previous Triangle Difference Inequality
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)